Hydrogen Ready! Wasserstoff-Workshop

Kawasaki Gas Turbine Europe GmbH

"Big Picture" der Energiewende – The Role of Hydrogen –

Dr.-Ing. Nurettin Tekin Hydrogen Product Management

13. Juni 2023

Climate Protection Goals of Germany

© KAWASAKI Gas Turbine Europe GmbH. All Rights reserved.

2

Kawasaki

Energy Consumption of Germany

Primary Energy Consumption

* vorläufige Angaben

** Ziele des Energiekonzeptes der Bundesregierung: Senkung des Primärenergieverbrauchs bis 2020 um 20% und bis 2050 um 50% (Basisjahr 2008) Ziel der Energieeffizienzstrategie 2050: Senkung des Primärenergieverbrauchs bis 2030 um 30% und bis 2050 um 50% (Basisjahr 2008) *** sonstige Energieträger: Grubengas, nicht-erneuerbare Abfälle und Abwärme sowie der Stromaustauschsaldo Quelle: Umweltbundesamt auf Basis AG Energiebilanzen, Auswertungstabellen, Stand 09/2022

🖌 Kawasaki

Energy Consumption of Germany

Development of sectorial net energy consumption

* vorläufige Angaben

Quelle: Umweltbundesamt auf Basis AG Energiebilanzen, Auswertungstabellen zur Energiebilanz der Bundesrepublik Deutschland, Stand 09/2022

4

Share of RES in the Power, Heat and Mobility Sector

Total Energy Production from Renewables in 2021

¹ mit biogenem Anteil des Abfalls
² Stromerzeugung aus Geothermie etwa 0,2 TWh (nicht separat dargestellt)
³ Verbrauch von EE-Strom im Verkehretwa 4,9 TWh Abweichungen bedingt durch Rundungen Quelle: Umweltbundesamt (UBA) auf Basis AGEE-Stat Stand 09/2022

Kawasaki

Development of the Electricity Production & Installed Capacity by RES

© KAWASAKI Gas Turbine Europe GmbH. All Rights reserved.

Degree of use of Renewables

Averaged Degree of Use: 1664 EFH=19%

Total Expansion Potential for Onshore Wind

Powering your potential

© KAWASAKI Gas Turbine Europe GmbH. All Rights reserved.

Total Expansion Potential for Offshore-Wind

Acatech et al. (2017), BDI (2018), BMU (2015), MWV (2018), Stiftung Offshore (2017)

Total Expansion Potential for Photovoltaic

Ideal Alignment

(Wh/kW

Germany:	kWh/m²	
	> 1.400	
n² ≈1%	1.350	
	1.300	
	1.250	
230-430 GVV	1.200	
	1.150	
max installable	1.100	
	< 1.050	

Powering your potential

Useable Area for Germany: approx. 3000km² ≈1% 150W/m²=> 450GW

Source: UBA 2010

Biomass Potential in 2050

RES Potential in Germany for Wind & PV

	REALISIERBARE OBERGRENZE VON WIND UND PHOTOVOLTAIK BEI CA. 800 TWH							
	ABBILDUNG 71 Ausbaupotenziale erneuerbarer Energien in Deutschland							
≈5000TWh Forschungsstelle für Energiewirtschaft 2019	Technologie	Stromerzeugung in 2050 (TWh)					Mögliche Restriktionen bei Potenzialausschöpfung	
		Referenz	80 %- Pfad	95%- Pfad	Realisierbares Potenzial	Technisches Potenzial		
≈3500TWh Fraunhofer ISE 2019	PV Dachanlagen	59	75	86	78 – 130 ¹	200	Nutzungskonkurrenz mit Solarthermie Hohe PV-Einspeisung passt schlechter zum Verbrauch als Wind	
_	PV Freifläche	20	25	28	140²	4.500	Nutzungskonkurrenz mit Ackerfläche, Naherholung, Großsolarthermie	
	Wind Onshore	176	204	215	240 ³	2.900	Akzeptanz Bevölkerung Flächennutzungspläne Abstandsregelungen (z. B. 1.500 m NRW-Koalitions- vertrag)	
	Wind Offshore	96	172	258	3004	500	Akzeptanz Bevölkerung Konkurrenz mit Schifffahrt, Fischerei	
	Gesamt	352	476	587	~ 800	7.800		

¹ Annahme: Geeignete Dachflächen; mit/ohne Flächenkonkurrenz Solarthermie ²⁰,7 % der Fläche DE ³Bebauung von 1 % der Fläche DE (von gesamt 2 % mit 1.500 m Wohnflächenabstand; Abschlag von 50 % wurde angenommen, da nicht alle diese Flächen für Windkraft geeignet sind oder vertraglich zur Verfügung stehen werden) ⁴Offshore-Potenzial auf den genehmigten und in der Entwicklung befindlichen Flächen für Wind offshore

Quelle: Bundesverband WindEnergie, UBA, Potenzial der Windenergie an Land (2012); BVG Associates/WindEurope, Unleashing Europe's offshore wind potential (2017); Prognos; BCG

"BIG PICTURE" OF GERMAN ENERGY TRANSITION

Source	Total- Potential (GW)	Eq. Full Load Hours (h) ▼	Production (TWh)
PV	250 - 450 (59 GW)*	1055	264 - 475 (62)
Onshore Wind	130 - 200 (56 GW)*	1960	255 - 392 (110)
Offshore Wind	54 - 72 (8 GW)*	3820	206 - 275 (32)
Biomass	48 - 50 (49 GW) [*]	5200	250 - 260 (256)
Geothermal	13-20 (0.2 GW)*	5190	68 - 104 (1)
Solar Thermal	100 - 200 (15 GW)*	521	52 - 104 (8)
Hydro Power	5.5 (5 gw)*	4081	23 (20)
Realizable	1117-1632		

Source: Own representation based on, BCG, Prognos, BDI, Fraunhofer IWES, Fraunhofer ISE, UBA, BMVI, LBST, RWE, BWE, BVG, AEE, FfE, FNR, BMU, BMWK, MWV, Acatech

Kawasaki

Net Energy Consumption in 2050

- 1: Reduction of heating demand of building & household sector by 50%
- 2: Reduction of fuel consumption in the Industry by 30%
- 3. Change over from fuel based to electro mobility (Assumption: 50% Battery und 50% H2)
- 4. Reduction of the electricity consumption by 30 %

100% RES Scenario in 2050

"Global Kawasaki"

